

SNOW PIT

http://learners.gsfc.nasa.gov/HOWmedia/SnowPitProtocol/

PURPOSE

DIG A TRENCH THAT EXPOSES THE FULL THICKNESS OF THE SNOW ON THE GROUND. THEN CHARACTERIZE THE PROFILE OF SNOW LAYERING:

• TEMPERATURE GRADIENT, • DENSITY, • SNOW/WATER EQUIVALENT,

• HARDNESS, • GRAIN SHAPE AND SIZE

HYPOTHESIS

THE SNOW COVER CONTAINS INFORMATION THAT REFLECTS THE CONDITIONS
OF SNOW DEPOSITION AND METAMORPHISM.
CAN THE ANALYSIS OF THE SNOW COVER, USING SCIENTIFIC PROTOCOLS,
PROVIDE A SNOW COVER CLASSIFICATION INDICATIVE OF THE LOCAL TO
REGIONAL CLIMATE CONDITIONS DURING THE WINTER WHEN SNOW IS ON THE
GROUND?

MATERIALS

FLAT FACED SHOVEL, METRIC TAPE MEASURE

> CALIBRATED THERMOMETER

DENSITY TUBES, SCALE TO WEIGH THE TUBES (EMPTY AND WITH SNOW)

YOUR INDEX FINGER, GOLF TEES OR POPSICLE STICK OR OTHER MARKERS,

SNOW CARD OR PLASTIC CARD OF SOME SORT, MAGNIFYING GLASS OR LOUPE TO EXAMINE SNOW GRAINS ON CARD

METHODS

DIG TRENCH IN THE SNOW COVER DOWN TO GROUND SURFACE

DETERMINE THE TEMPERATURE PROFILE OF THE SNOW COVER

DETERMINE THE DENSITY OF THE SNOW IN PROFILE AND CALCULATE THE WATER EQUIVALENCE OF THE SNOW IN PROFILE

DETERMINE THE HARDNESS OF THE SNOW PROFILE AND IDENTIFY THE PRESENCE OF LAYERING

DETERMINE THE GRAIN SIZE AND SHAPE OF SNOW GRAINS IN THE PROFILE

DATA

Water
Tundra snow
Taiga snow
Maritime snow
Ephemeral snow
Prairie snow
Mountain snow

ANALYSIS

AFTER THE SNOW FALLS TO THE GROUND IT CONTINUES TO CHANGE ITS CHARACTERISTICS OVER TIME. IDEALLY, EACH OF THE "SNOW BIOMES" WILL HAVE A DIFFERENT AND RECOGNIZABLE SNOW PROFILE THAT CAN BE ANALYZED TO REFLECT THE CLIMATE CONDITIONS VIA THE VAGARIES OF ON GROUND METAMORPHISM IN EACH OF THE 'BIOMES'